Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.
نویسندگان
چکیده
Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency.
منابع مشابه
Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملPlatelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase.
Platelet-activating factor (PAF) is a mediator of pulmonary oedema in acute lung injury that increases vascular permeability within minutes, partly through activation of acid sphingomyelinase (ASM). Since caveolae are rich in sphingomyelin and caveolin-1, which block endothelial nitric oxide (NO) synthase (eNOS) by direct binding, we examined the relationship between ASM, caveolin-1 and eNOS ac...
متن کاملMethanol extract and fraction of Anchomanes difformis root tuber modulate liver mitochondrial membrane permeability transition pore opening in rats
Objective: Extracts of Anchomanes difformis (AD) are used in folkloric medicine to treat several diseases and infections. However, their roles in mitochondrial permeability transition pore opening are not known. Material and Methods: The viability of mitochondria isolated from Wistar rat liver used in this experiment, was assessed by monitoring their swel...
متن کاملMitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan
Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-indu...
متن کاملMitochondrial Toxicity of Depleted Uranium: Protection by Beta-Glucan
Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 65 شماره
صفحات -
تاریخ انتشار 2013